Biophys Chem 1998,75(3) 249–257 CrossRef 52 Chen F-M: Acid-facil

Biophys Chem 1998,75(3) 249–257.CrossRef 52. Chen F-M: Acid-facilitated supramolecular assembly of G-quadruplexes in d(CGG)β4. J Biol Chem 1995,270(39) 23090–23096.CrossRef 53. Zheng L, Wang X, Zhang JL, Li W: DNA nanotechnology based on polymorphic G-quadruplex. Progress in Chemistry 2011,23(5) 974–982. Competing interests The authors declare that they

have no competing interests. Authors’ contributions MAM designed the sequences, carried out the gel electrophoresis and AFM measurements, and wrote initial drafts Alvocidib order of the Idasanutlin concentration manuscript. VAS conducted gel electrophoresis experiments, supervised the design and completion of the work, and wrote the final version of the manuscript. Both authors read and approved the final manuscript.”
“Background Resonance energy transfer (RET) between nanosystems is extensively researched in nanophotonics, which Selleck AZD2014 has various important applications ranging from biological detections and chemical sensors to quantum information science [1–11]. RET may proceed in different transfer distances: the Dexter process [12] based on wave function overlap transfers within the range of about 1 nm, and the Forster process [13] caused by

the near-field resonant dipole-dipole interaction transfers usually within the range of 10 nm. The efficient transfer energy distance is still very short. It is thus important to enhance the efficiency of RET in a long distance. The RET rate by the dipole-dipole interactions can be greatly manipulated by the electromagnetic environment; many different kinds of electromagnetic environments have been used to enhance the resonant dipole-dipole interaction strength and the efficiency of the RET, such as optical cavities [2, 14–17], optical lens or fiber [18, 19], and metamaterials [20, 21]. In the last decades, it has been demonstrated that surface plasmon supported by metal nanostructures is a powerful tool to enhance

the efficiency of RET. Since Andrew et al. [5] demonstrated long-distance plasmon-mediated RET using Ag films, a great deal of fantofarone efforts have been devoted to investigate plasmon-mediated RET using nanoparticles [22–25], plasmonic waveguides [9, 11, 26], single nanowires [27–30], and nanorod or nanowire arrays [10, 19, 31]. Most of the previous works focus on the case of the donor and acceptor having parallel transition dipole moments. However, in practical devices, it is extremely difficult to satisfy the parallel condition between the dipole moments of the donor and acceptor, and when the donor and acceptor have nonparallel dipole moments, the RET rate may decrease evidently. It is thus important to design nanostructures to achieve big RET enhancement for donor and acceptor with nonparallel dipole moments. In this paper, we investigate the enhancement of the RET rate between donor and acceptor associated by surface plasmons of Ag nanorods on a SiO2 substrate.

The antibacterial activity of ZZ1 was highest against the strain

The antibacterial activity of ZZ1 was highest against the strain AB09V, followed by AB0902 and then AB0901, based on the minimum

phage concentration required to form clear spots at 37°C. The natural resistance mechanisms of AB0901 and AB0902 against ZZ1 are worth further investigation in future studies. With respect to its life cycle in the sensitive strain AB09V, ZZ1 proliferates efficiently, with a short latent period (9 min), a large burst size (200 PFU/ml), and a high adsorption rate. Remarkably, only less than 50 CFU/ml of the AB09V cells remained viable 30 min after Selleckchem Tofacitinib AB09V cells were mixed with ZZ1 particles at a multiplicity of infection (MOI) of 10 at 37 °C. Moreover, ZZ1 exhibited the most powerful antibacterial activity at temperatures ranging from 35°C to 39°C, suggesting that the phage would be highly effective when placed inside the body at normal or near normal body temperature. In addition, ZZ1 was stable over a wide pH range (4-9) and was strongly resistant to heat. All of these features have implications for the use of this phage as a stable therapeutic agent for the treatment of A. baumannii infections, especially PU-H71 in vitro those caused by the strain most sensitive to the phage, AB09V. The differences in the antibacterial activity of ZZ1

against the strains tested will be the focus of our future research both in vitro and in vivo. Conclusions This study provides information about a novel virulent A. baumannii phage. Our future research will examine

the application of this characterized phage in treating infections by A. baumannii clinical isolates both in vivo and in vitro. Methods Bacterial strains and Identification Twenty-three clinical strains of A. baumannii were used in this study for phage isolation and phage host investigation. All of these strains were isolated from the sputum of hospitalized patients at the Henan Province People’s Hospital in Zhengzhou, China. After obtaining the approval of the Life Science Ethics Committee of Zhengzhou University and written informed consent, sputum samples were collected for the purposes of Methamphetamine this study. The automated system BD Phoenix (selleck Becton Dickinson Diagnostic Systems, Sparks, MD, USA) was used on clinical samples for the identification of bacteria and for antibiotic susceptibility tests. Only 3 of the 23 strains could be lysed by ZZ1; these were lysed to varying degrees. Therefore, the 3 strains were designated AB09V, AB0901, and AB0902 in our nomenclature. The 3 strains selected for use in this study were further confirmed as A. baumannii using sequence information derived from their 16 S rRNA gene. Briefly, bacterial DNA was isolated as previously described [24]. The extracted DNA was used as the PCR template to amplify the 16 S ribosomal RNA coding regions. The ClustalX 2.0 program and Oligo 4.0 primer analysis software were used for universal primer design based on homology profiles among the 16 S rRNA genes of A.

cSterile Milli

cSterile Milli

www.selleckchem.com/products/PF-2341066.html Q water used as control. ***Statistically significant at alpha < 0.05. Abbreviations: ND, Not Detected. Figure 1 Map of study area/sampling sites in the landscape. Inset view simulates the complete 2510 km stretch of river Ganga from Himalaya to Bay of Bengal. Abbreviations: S#1, site 1: Bithoor (most upstream site); S#2, site 2: Bhairon ghat; S#3, site 3: Parmat ghat; S#4, site 4: sattichaura ghat or nana-rao ghat; S#5, site 5: jajmau (most downstream site). Arrows indicate the direction of surface water flow in the up-to-down-gradient fashion in the landscape. Topographic data based upon Survey of India map (adopted from http://​www.​ttkmaps.​com). Enterococcus spp. isolated from river Ganga waters A significant (χ2: 100.4,

df: 20; p < 0.0001) heterogeneity and diversity was observed in Enterococcus spp. recovered from river Ganga surface water samples collected from five different sites (Table 2). The spatial heterogeneity of Enterococcus spp. varied widely along the landscape, depending upon exposure to various HDAC inhibitor environmental and anthropogenic factors. In general, the enterococcal spatial heterogeneity seems to be introduced either via point sources (urban sewage, clinical and industrial discharge) or nonpoint sources (agricultural runoff and storm-water route).E. faecalis (64%) was found to be the most prevalent species followed by E. faecium (24%) throughout the landscape. A gamut of factors appears to complement the increase of E. faecalis and E. faecium coexistence towards the down-gradient sites in the similar environmental niche. The coexistence of these two genotypes in one niche may be due to their differential affinity and efficiency of resource utilization complementing similar phenomenon reported elsewhere for Vibrio cholerae serogroups; O139 Bengal and O1 E1 Tor [23]. In the same study, the enhanced affinity of V. cholerae O1 E1 Tor to colonize copepods was observed

to be a contributory factor for its dominance in cholera epidemic. Likewise E. faecalis, the most prevalent species observed in this study has been implicated in ca. 67% and 90% of enterococcal infection cases associated with multiple-antimicrobial-resistance in different clinical studies conducted Dimethyl sulfoxide in India and USA respectively [12, 24]. E. durans and E. hirae were not PI3K inhibitor evenly distributed throughout the landscape. The presence of E. hirae (2%) was observed only at the locations which receive tannery effluents contaminated with heavy metals. The prevalence of E. durans (8%) appears to be affected by urban wastewater point-source contamination. The “”other Enterococcus spp.”" was present at site 5 only. Moreover, it appears that the environmental factors account for the spatial variation of Enterococcus spp. in the landscape. Table 2 Frequency of distribution of Enterococcus spp. diversity among sites (n = 5) Sampling Site No. of isolates (%) p-Value   E. faecalis E. faecium E. durans E. hirae other Enterococcus spp.

These data suggest that geography may influence

These data suggest that geography may influence Wolbachia prevalence as reported previously for field populations of spider Hylyphantes graminicola [74]. Further research on the heterogeneous distribution of Wolbachia infection in field populations could shed more light on the functional role of this endosymbiont in tsetse flies biology, ecology and evolution. Genotyping – Wnt inhibitor phylogeny The MLST- and wsp-based sequence analysis indicates that all but one of the Wolbachia strains infecting Glossina species GSK621 clinical trial belong to supergroup A; the exception being the bacterial strain infecting G. p. gambiensis, which belongs to supergroup B. The supergroup A tsetse flies Wolbachia strains are members

of three separate and distantly related groups. Our results are in accordance with two previous studies that relied on just the wsp phylogeny but indicated a similar topology [42, 44]. The phylogenetic analyses strongly suggest the presence of distantly related Wolbachia strains in tsetse flies species and support the hypothesis that horizontal transmission of Wolbachia between insect species from unrelated taxa has extensively occurred, as has been reported in the spider genus Agelenopsis [70], in the wasp genus Nasonia

Temsirolimus cell line [71], in the acari genus Bryobia [40] and in the termites of genus Odontotermes [75]. On the other hand, the sibling species G. m. morsitans and G. m. centralis carry closely related Wolbachia strains, which have

identical ST and differ only in the sequence of the fast evolving wsp gene, which suggests host-symbiont co-divergence. In addition, field populations of G. m. morsitans from different locations of Africa harbor very closely related Wolbachia strains, suggesting that the geographical origin of their hosts did not impact significantly Wolbachia strain divergence. Our findings are in agreement with reports on dipteran hosts associated with mushrooms [76] and on the spider Hylyphantes graminicola [74]. Cytidine deaminase On the other hand, studies on fig wasps [77] and ants [78] showed considerable association between biogeography and strain similarity. Horizontal gene transfer The evolutionary fate of any host-bacterial symbiotic association depends on the modes of transmission of the bacterial partner, vertical, horizontal or both. Additionally, horizontal gene (or genome) transfer events may also be important. Our data suggest that at least three genes (16S rRNA, fbpA and wsp) of the Wolbachia strain infecting G. m. morsitans have been transferred to the host genome (Figures 3 and 4). This transfer is supported by the amplification of derivative copies of fbpA and 16S rRNA, and of wsp in tissues from tetracycline-treated G. m. morsitans (Figure 4). The results suggest that fbpA and 16S rRNA have been pseudogenized through the accumulation of deletions, consistent with previous studies [45, 46, 51].

We demonstrate that the ability of secreted

We demonstrate that the ability of secreted BAY 63-2521 order cath-D to promote fibroblast invasive growth depends on the presence of LRP1. Interestingly, the gamma-secretase inhibitor, DAPT, that inhibits the release of LRP1beta intracellular domain, also triggers fibroblast outgrowth, suggesting involvement of LRP1 RIP. We further show that both LRP1beta intracellular domain and membrane-associated LRP1beta fragment production

are Adavosertib research buy decreased in presence of wild-type or catalytically-inactive cath-D, suggesting a cath-D-mediated inactivation of RIP signalling by competition with the first cleavage event. In summary, our results indicate that cath-D hypersecreted by cancer cells triggers the fibroblastic outgrowth in the breast tumor micro-environment in an LRP1-dependent paracrine manner by inhibiting LRP1 RIP. Poster

buy Vactosertib No. 43 Early Diagnosis of Breast Cancer through the Analysis of the Breast Intraductal Microenvironment: Identification of Cellular and Metabolic Biomarkers in Nipple-Aspirate Fluids Ferdinando Mannello 1 , Virginia Medda1, Alessandra Smaniotto1, Gaetana A. Tonti1 1 Department of Biomolecular Sciences, Section of Clinical Biochemistry, University “Carlo Bo”, Urbino, PU, Italy Breast cancer, a complex and multifactorial disease, is the most commonly diagnosed malignancy affecting women; its aetiology may include diet and xenobiotic compounds that influence breast microenvironment (1). Currently available methods of breast cancer detection have well-described limitations (2); in this respect, the biological intraductal approaches directly assess the microenvironment of the breast (3). Breast nipple aspirate fluids (NAF) can be non-invasively obtained from the breast in almost all women (4), thus representing a promising biological tool to assess metabolic and molecular changes occurring in cells lining the ducts from which breast cancer arises. The analyses of NAF collected from healthy and breast cancer

patients allows to identify biomolecular characteristics (1) assessing morphological (5,6), protein (7) and hormonal (8) changes in the breast ductal microenvironment. The NAF studies set the basis for biomarker discovery useful for the early detection and prevention this website of breast cancer, improving the identification of women with increased breast cancer risk analyzing directly the breast intraductal microenvironment. References: 1. Mannello et al. Genes Nutr 3,2008,77–85. 2. Fabian et al. Endocr.Relat Cancer 2005, 12:185–213. 3. Dua RS et al. J.Clin.Oncol. 2006, 24:1209–1216. 4. Petrakis NL. Epidemiol.Rev. 1993, 15:188–195. 5. Mannello F et al. J.Clin.Lab Anal. 2000, 14:330–335. 6. Mannello F et al. Breast Cancer Res.Treat. 2007, 102:125–127. 7. Mannello et al. Expert Rev Proteomics 6,2009,43–60. 8. Mannello F et al. Expert Rev Endocrinol Metab 2009 (in press). Poster No.

After 72 h, the cancer cells infected with

After 72 h, the cancer cells infected with ZD55-Sur-EGFP became lysed but there was little change in the morphology of AD-Sur-EGFP infected cells. Figure 3 SW480 and Niraparib mw LoVo cells as well as IEC cells were plated at 10 5 cells per 6 cm dishes and infected with ZD55-Sur-EGFP (A) or AD-Sur-EGFP (B) for 48 h (a) or 72 h (b). Then the cells were observed through a fluorescence microscope. ZD55-Sur-EGFP showed much stronger affinity to SW480 cells than AD-Sur-EGFP, but it rarely replicated in normal cells IEC at 24 h post infection. After 72 h, the cells infected with ZD55-Sur-EGFP

became lysed but there was little change in the morphology of AD-Sur-EGFP infected cells. (Original magnification ×200). Inhibition of Survivin gene expression RT-PCR was performed 48 h after infection at MOI of 10. Both ZD55-Sur-EGFP and AD-Sur-EGFP suppressed the expression of Survivin mRNA in SW480 and LoVo cells significantly, whereas ZD55-EGFP and Ad-EGFP showed little inhibition on Survivin mRNA. The Survivin protein expression Saracatinib research buy analyzed by western blot was consistent with results from RT-PCR. The gels were analyzed by ImageMaster Total Lab software. Results showed ZD55-Sur-EGFP and AD-Sur-EGFP significantly down regulated the expression

of Survivin protein but ZD55-EGFP and AD-EGFP had little effect on Survivin expression. Importantly, infection of neither ZD55-Sur-EGFP nor AD-Sur-EGFP affected the expression of another check details anti-apoptotic protein XIAP. (Fig 4) Figure 4 Inhibition of Survivin mRNA and protein expression in SW480 and LoVo cells. The cancer cells were treated with ZD55-Sur-EGFP, ZD55-EGFP, AD-Sur-EGFP and AD-EGFP respectively at MOI of 10. a: AD-EGFP group b: ZD55-EGFP group c: AD-Sur-EGFP group d: ZD55-Sur-EGFP group. (A) RT-PCR second showed significant reduction of Survivin mRNA in ZD55-Sur-EGFP and AD55-Sur-EGFP treated cells. (B) Survivin protein levels in above mentioned groups were consistent with mRNA expression by Westen blot, and XIAP protein expression was not affected. **P < 0.0001,

*P < 0.05 Inhibition on in vitro growth and viability To detect the specific cytopathic effect of ZD55-Sur-EGFP in tumor cells, SW480, LoVo, as well as IEC cells, were infected with various adenoviruses at indicated MOIs. As shown in Fig 5. Marked cytopathic effect was observed in both tumor cell lines infected with ZD55-Sur-EGFP compared with ZD55-EGFP, AD-Sur-EGFP and AD-EGFP infected cells even at low MOIs. And ZD55-Sur-EGFP caused limited cell death in normal cell line IEC. Figure 5 The impact of oncolytic adenovirus mediated RNAi against Survivin on SW480, LoVo and IEC cells. Cells were seeded in a 24-well plate at 1 × 105 cells per well. Then they were infected with different adenoviruses at different MOIs. At last, cells were stained with Coomassie brilliant blue.

(a) The electric field vector distributions when the applied volt

(a) The electric field vector distributions when the applied voltage became 0.9 V from 0.5 V. (b) The electric field vector distributions when the applied voltage became 0.5 V from 0.9 V. In situ assembly and photoelectric property measurement The electrodeposited regular PbTe/Pb nanostructure is first jointed into the circuit by using e-beam evaporation, as seen in Figure  4b. The excellent conductive metal molybdenum is used as the electrode material. Then, the ethanol turbid liquid containing Zn x Mn1−x S nanoparticles doped with 1.26 mol% of Mn2+ content is gradually dripped into the PbTe/Pb nanostructure arrays. With the evaporation of ethanol, the capillary force drives the spherical

nanoparticle to flow toward the PbTe/Pb nanostructure surface; eFT508 finally, the Zn x Mn1−x S nanoparticle is deposited on the surface [26]. Comparing the changes of current versus voltage (I-V) curves before and after assembling the Zn x Mn1−x S nanoparticles, we study their photoelectric property under the 532-nm wavelength and 1 × 10−3 W/cm2 laser irradiation conditions. Figure  5 shows the schematic illustration of the in situ construction and photoelectric measurement process. Figure

4 The photoelectric performance measurement. (a) The current-voltage characteristics selleckchem of the single PbTe/Pb nanostructure before and after laser irradiation at 300 K a Without light irradiation; b under the 532-nm wavelength, 1 × 10−3 W/cm2 laser irradiation; and c restoration without light irradiation again. (b) The current-voltage characteristics of PbTe/Pb nanostructure arrays before and after assembling the Zn x Mn1−x S nanoparticles at 300 AZD9291 datasheet K. The lower

right insert IACS-10759 in vitro figure gives the optical micrograph of the PbTe/Pb array device with molybdenum electrodes. d Without light irradiation; e under the 532-nm wavelength, 1 × 10−3 W/cm2 laser irradiation; f combined a spot of Zn x Mn1−x S nanoparticles under the 532-nm wavelength, 1 × 10−3 W/cm2 laser irradiation; and g combined sufficient Zn x Mn1−x S nanoparticles under the 532-nm wavelength, 1 × 10−3 W/cm2 laser irradiation. Figure 5 The Schematic illustration of PbTe/Pb-based nanocomposite situ assembly and photoelectric measurement process. (a) The electrodeposited PbTe/Pb nanostructure arrays on a substrate. (b) The circuit connection of PbTe/Pb nanostructure and its electrical performance measurement. (c) The photoelectric performance measurement of individual PbTe/Pb nanostructure. (d) The situ assembly of the PbTe/Pb-based nanocomposite and its photoelectric performance measurement. The electrical measurements are performed by an ultrahigh vacuum system (1 × 10−9 Torr) at 300 K. All of the I-V characteristics under a high bias voltage are nonlinear, as shown in Figure  4. Figure  4a gives the I-V curves of the individual PbTe/Pb nanostructure before and after light irradiation.

Prior to the development of modern defined strain starters the st

Prior to the development of SRT2104 manufacturer modern defined strain starters the starter used in milk fermentations would have contained a number of different strains and over a long period of time strains

with r/m systems would be expected to predominate as these systems would offer some protection against bacteriophage attack. Even prior to the development of the modern dairy industry and strain selection techniques the use of back-slopping would ensure that only strains from successful fermentations were propagated in future fermentations. Therefore during the long history of fermented milk products see more there was a strong selective pressure towards phage resistant strains even before the existence of bacteriophage was known. Proposed mechanism of niche adaptation Niche adaptation occurs in a number of ways, namely gene loss or decay, lateral gene transfer or gene up regulation or mutation. In LAB, there is evidence for all of these mechanisms. The high number of pseudogenes in the dairy LAB provides us with striking Selleckchem EPZ5676 evidence of gene loss (Table 1). Lb. helveticus, Lb. delbrueckii and S. thermophilus have 217, 533 and 180 pseudogenes, respectively, whilst the gut bacteria, Lb. acidophilus, Lb. johnsonii and Lb. reuteri have no pseudogenes and Lb.

gasseri and Lb. salivarius having just 48 and 49, respectively. These pseudogenes are non-functional due to frameshift, nonsense mutation and Farnesyltransferase deletion or truncation. The functional categories into which these pseudogenes fall is interesting; the majority of the pseudogenes appear to be essential gut-living genes, including those involved in carbohydrate and amino acid metabolism and transport and bile salt hydrolysis. In the case of Lb. delbrueckii, the remarkably high number of pseudogenes is indicative of ongoing adaptation and genome specialisation. An example of this is the bile salt hydrolase gene of Lb. helveticus, which is frameshifted

at nucleotide position 417 which introduces a stop codon, rendering the gene inactive. There is also strong evidence of lateral gene transfer events in the form of fluctuations in the GC content of the genomes. Lb. delbrueckii has a higher than average GC content of 49%, mostly due to differences at codon position 3. The evolution at codon position 3 is much faster than position 1 or 2, suggesting that Lb. delbrueckii is in an active state of genome evolution[36]. Within the Lb. delbrueckii genome, there is still evidence of lateral gene transfer with regions of GC content as high as 52%. The most notable of these regions contains an ABC transporter gene which allows protocooperation with S. thermophilus. In Lb. helveticus, there is a 100 KB section with a GC content of 42% (5% higher that the rest of the genome). Localised within this region are numerous assumed dairy specific genes including those involved in fatty acid metabolism, restriction endonuclease and amino acid metabolism genes [1].

Ballif M, Harino P, Ley S, Carter R, Coulter C, Niemann S, Borrel

Ballif M, Harino P, Ley S, Carter R, Coulter C, Niemann S, Borrell S, Fenner L, Siba P, Phuanukoonnon S, Gagneux S, Beck H-P: Genetic diversity of Mycobacterium tuberculosis in Madang, Papua New Guinea. The international journal of tuberculosis and lung disease: the official journal of the International Union against Tuberculosis and Lung Disease 2012, 16:1100–1107.

5. Gagneux S, DeRiemer K, Van T, Kato-Maeda M, de Jong BC, PD173074 chemical structure Narayanan S, Nicol M, Niemann S, Kremer K, Gutierrez MC, Hilty M, Hopewell PC, Small PM: Variable host-pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2006, 103:2869–2873.PubMedCrossRef 6. Zhang Y, Yew WW: Mechanisms of drug resistance in Mycobacterium tuberculosis [State of the art series. Drug-resistant tuberculosis. Edited by C-Y. Chiang. Number 1 in the series]. The International Journal of Tuberculosis and Lung Disease 2009, 13:1320–1330.PubMed 7. Müller B, Streicher EM, Hoek KGP, Tait M, Trollip A, Bosman ME, Coetzee GJ, Chabula-Nxiweni EM, Hoosain E: Gey van Pittius NC, Victor TC, van Helden PD, Warren RM: inhA promoter mutations: a gateway to extensively drug-resistant tuberculosis in South Africa? Int. J. Tuberc. Lung Dis 2011, 15:344–351.PubMed 8. Sandgren A, Strong M, Muthukrishnan P, Weiner BK, Church GM, Murray MB: Tuberculosis Drug Resistance Mutation Database. PLoS Med 2009, 6:Alvocidib e1000002.CrossRef 9. Hazbón MH, Brimacombe M: Bobadilla del Valle M, Cavatore

M, Guerrero MI, Varma-Basil M, Billman-Jacobe H, Lavender C, Fyfe J, García-García L, León CI, Bose RG7112 M, Chaves F, Murray M, Eisenach KD, Sifuentes-Osornio J, Cave MD, Ponce de León A, Alland D: Population Genetics Study of Isoniazid Resistance Mutations and Evolution of Multidrug-Resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 2006,

50:2640–2649.PubMedCrossRef 10. Sherman DR, Mdluli K, Hickey MJ, Arain TM, Morris SL, Barry CE: Stover CK: Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science MEK inhibitor 1996, 272:1641–1643.PubMedCrossRef 11. Gagneux S, Burgos MV, DeRiemer K, Enciso A, Muñoz S, Hopewell PC, Small PM, Pym AS: Impact of Bacterial Genetics on the Transmission of Isoniazid-Resistant Mycobacterium tuberculosis. PLoS Pathog 2006, 2:e61.PubMedCrossRef 12. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T: Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993, 341:647–650.PubMedCrossRef 13. Van Deun A, Barrera L, Bastian I, Fattorini L, Hoffmann H, Kam KM, Rigouts L, Rüsch-Gerdes S, Wright A: Mycobacterium tuberculosis strains with highly discordant rifampin susceptibility test results. J Clin Microbiol 2009, 47:3501–3506.PubMedCrossRef 14. van Ingen J, Aarnoutse R, de Vries G, Boeree MJ, van Soolingen D: Low-level rifampicin-resistant Mycobacterium tuberculosis strains raise a new therapeutic challenge. Int. J. Tuberc. Lung Dis 2011, 15:990–992.PubMedCrossRef 15.

XZ is an associate professor in MNMT at Tianjin University His r

XZ is an associate professor in MNMT at Tianjin University. His research interests include ultra-precision machining and metrology, freeform optics

manufacture and applications. FF is a professor in MNMT, working in the areas of optical freeform selleck screening library manufacturing, micro/nano machining, ultra-precision machining BYL719 and metrology. He is the editor-in-chief of the International Journal of Nanomanufacturing, the president of the International Society for Nanomanufacturing, and a fellow of the International Academy for Production Engineering. YW is a professor of Physics at Nankai University. Current research interests include surfaced enhanced Raman spectra, light scattering of nanoparticles and first principles calculation of materials. MF is working at Nankai University as a technician Luminespib order with the research objective in investigating the electronic, magnetic, and thermodynamic properties of materials using first-principles calculation, potential

model, and Monte Carlo simulation. WT is studying as a masters student in optics at Nankai University. Acknowledgements The authors appreciate the supports of the National Natural Science Foundation of China (grant no. 90923038), the National Basic Research Program of China (973 Program, grant no. 2011CB706703), and the ‘111’ Project by the State Administration of Foreign Experts Affairs and the Ministry of Education of China (grant no. B07014). References 1. Shimada S, Ikawa N, Tanaka H, Ohmori G, Uchikoshi J: Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation. Ann CIRP 1993, 42:117–120.CrossRef 2. Shimada S, Ikawa N, Tanaka H, Uchikoshi J: Structure of micromachined surface simulated by molecular dynamics TCL analysis. Ann CIRP 1994, 43:51–54.CrossRef 3. Shimada S, Ikawa N, Inamura T, Takezawa N: Brittle-ductile transition phenomena in microindentation and micromachining. Ann CIRP 1995, 44:523–525.CrossRef 4. Inamura T, Shimada S, Takezawa N, Nakahara N: Brittle-ductile

transition phenomena observer in computer simulations of machining defect-free monocrystalline silicon. Ann CIRP 1997, 46:31–33.CrossRef 5. Komanduri R, Chandrasekaran N, Raff LM: Orientation effects in nanometric cutting of single crystal materials: an MD simulation approach. Ann CIRP 1999, 48:296–302.CrossRef 6. Komanduri R, Chandrasekaran N, Raff LM: MD simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting. Wear 2000, 242:60–88.CrossRef 7. Komanduri R, Chandrasekaran N, Raff LM: Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B 2001, 81:1989–2019.CrossRef 8. Fang FZ, Venkatesh VC: Diamond cutting of silicon with nanometric finish. Ann CIRP 1998, 47:45–49.CrossRef 9. Fang FZ, Zhang GX: An experimental study of edge radius effect on cutting single crystal silicon. Int J Adv Manuf Tech 2003, 22:703–707.CrossRef 10.