When an appropriate fluid challenge fails, to restore an adequate

When an appropriate fluid challenge fails, to restore an adequate arterial pressure and organ perfusion, therapy with vasopressor agents should be started. Vasopressor drugs maintain adequate blood pressure and preserve perfusion pressure for optimizing flow in various organs. Tariquidar Both norepinephrine and dopamine are the first-line vasopressor agents to correct hypotension in septic shock. Both norepinephrine and dopamine can increase blood pressure in shock states, although norepinephrine

seems to be more powerful. Dopamine may be useful in patients with compromised cardiac function and cardiac reserve [12], but norepinephrine is more effective than dopamine in reversing hypotension in patients with septic shock. Dopamine has also potentially detrimental effects on the release of pituitary hormones and especially prolactin, although the clinical relevance of these effects is still unclear and can have unintended effects such as tachyarrhythmias. Dopamine has different effects based on the doses [13]. A dose of less

than 5 μg/kg/min results in vasodilation of renal, mesenteric, and coronary districts. At a dose of 5-10 μg/kg/min, beta-1-adrenergic effects increase cardiac contractility and heart rate. At doses about 10 μg/kg/min, alpha-adrenergic effects lead to arterial vasoconstriction and increase blood pressure. Its major side effects are tachycardia and arrhythmogenesis. The use of renal-dose dopamine CX-6258 clinical trial in sepsis is a controversial issue. In the past, low-dose dopamine was routinely used because of the possible renal protective effects. Dopamine at a dose of 2-3 μg/kg/min was known to stimulate diuresis by increasing renal blood flow. A multicentre, randomised, double-blind, placebo-controlled Linifanib (ABT-869) study about low-dose dopamine in patients with at least two criteria for the systemic inflammatory response syndrome and clinical evidence of early renal dysfunction (oliguria or increase in serum creatinine concentration), was published on 2000 [14]. Patients admitted were randomly assigned a continuous intravenous infusion of low-dose dopamine (2 μg/kg/min) or placebo administered through a central venous catheter. Administration

of low-dose dopamine by continuous intravenous infusion to critically ill patients at risk of renal failure did not confer clinically significant protection from renal dysfunction. A meta-analysis of literature from 1966 to 2000 for studies addressing the use of dopamine in the prevention and/or treatment of renal dysfunction was published on 2001 [15]. The Authors concluded that the use of low-dose dopamine for the treatment or prevention of acute renal failure was not justified on the basis of available evidence. Norepinephrine is a potent alpha-adrenergic agonist with minimal beta-adrenergic agonist effects. Norepinephrine can successfully increase blood pressure in patients who are septic and remain hypotensive following fluid resuscitation. Norepinephrine is effective to treat hypotension in septic shock patients.

Comments are closed.