In this study, we describe three young Chinese patients

w

In this study, we describe three young Chinese patients

with MELAS/LS overlap syndrome who carried the m.13513G>A mutation. Clinical and MRI features were characteristic of both MELAS and LS. Interestingly, the clinical presentation of this overlap syndrome could be variable depending on the degree of relative contribution of MELAS and LS, that GW-572016 mouse is, MELAS as the initial presenting syndrome, LS as the predominant syndrome, or both MELAS and LS appearing at the same time. The final brain MRI showed findings characteristic of both MELAS and LS, with asymmetrical lesions in the cortex and subcortical white matter of the occipital, temporal, and frontal lobes (MELAS), and bilateral and symmetrical lesions in the basal ganglia and brainstem (LS). Brain autopsy in one case revealed infarct-like lesions in the cerebral cortex, basal ganglia and brainstem, providing further insight into the distribution of the pathological lesions in MELAS/LS overlap syndrome. This is the first report of the brain pathological changes in a patient with m.13513G>A mutation. The spatial Stem Cell Compound Library supplier distribution of infarct-like lesions in the brain could explain the symptoms in MELAS/LS overlap syndrome. “
“Peripheral primitive neuroectodermal

tumor/Ewing’s sarcoma (ES) (pPNET/ES) of intracranial origin are very rare. These tumors are characterized by specific translocations involving a gene on chromosome 22q12, the most common being t(11;22) (q24;q12). We report a case of 37-year-old man with pPNET/ES arising in the meninges and bearing the rare translocation t(21;22) (q22;q12). The tumor was composed of sheets and nests of monotonous small cells with round to oval nuclei, finely dispersed chromatin, small nucleolus

and scant cytoplasm. We discuss the importance of the differential IKBKE diagnosis with central primitive neuroectodermal tumors (cPNET). “
“F. Geser, J. A. Malunda, H. I. Hurtig, J. E. Duda, G. K. Wenning, S. Gilman, P. A. Low, V. M.-Y. Lee and J. Q. Trojanowski (2011) Neuropathology and Applied Neurobiology37, 358–365 TDP-43 pathology occurs infrequently in multiple system atrophy Aims and Methods: The α-synucleinopathy multiple system atrophy (MSA) and diseases defined by pathological 43-kDa transactive response DNA-binding protein (TDP-43) or fused in sarcoma (FUS) aggregates such as amyotrophic lateral sclerosis and frontotemporal lobar degeneration show overlapping clinico-pathological features. Consequently, we examined MSA for evidence of TDP-43 or FUS pathology utilizing immunohistochemical studies in autopsy material from 29 MSA patients. Results: TDP-43 pathology was generally rare, and there were no FUS lesions.

Comments are closed.