5 μm sections were cut using a microtome and mounted on poly-L-lysine-coated slides. Slides were stained using the Sirius red staining protocol which allows the identification of eosinophils (Meyerholz, Griffin, Castilow, & Varga, 2009). The number of eosinophils was counted per field of view magnification. Four fields of view were counted per animal. Eosinophils were defined as cells demonstrating a cytoplasm
staining an intense red with dark bi-lobed nuclei. All lung function data were plotted as a percentage of baseline to take into account the individual differences in guinea-pig baseline sGaw values. To account for differences in the timing of allergen responses during the early (0–6 h) and late (6–12 h) phases, sGaw was also expressed as the peak bronchoconstriction, displayed as a histogram next to a time course plot. Results are plotted as the mean ± standard error of the mean (SEM). Student’s t-tests Paclitaxel manufacturer were used for the comparison of differences
between groups or data points. One way analysis of variance (ANOVA) followed by a Dunnett’s post-test was used when 2 or more groups were being compared to a control group. A p value less than 0.05 was considered significant. Fig. 1 represents the mean time-course changes in sGaw over 24 h following Ova challenge in conscious guinea-pigs sensitised and challenged with saline or protocols 1–6. The sensitisation and IGF-1R inhibitor challenge protocol previously used successfully in this laboratory (Evans et al., 2012 and Smith and
Broadley, 2007) was protocol 1, which consisted of sensitisation with 2 injections of 100 μg/ml Ova and 100 mg Al(OH)3, with subsequent 100 μg/ml Ova challenge. This resulted in an immediate significant reduction in sGaw (− 45.6 ± 6.2%), characteristic of an early asthmatic response (Fig. 1A). This bronchoconstriction did not return to saline-challenged levels until 2 h post-challenge. No further decreases in sGaw, characteristic of the late asthmatic response, were observed. Increasing the Ova challenge concentration to 300 μg/ml (protocol 2, Fig. 1B) increased the immediate bronchoconstriction (− 60.9 ± 2.1%), compared to protocol 1, which before returned to baseline levels 4 h post-challenge. No late asthmatic response was observed. Increases in the Ova sensitisation concentration to 150 μg/ml (protocol 4) and the number of injections (protocol 3) did not alter the airway response (not shown). Increasing the Al(OH)3 adjuvant concentration to 150 mg (protocol 5, Fig. 1C) did not alter the size or duration of the early asthmatic response compared to protocol 4 but produced a late asthmatic response, characterised by a significant decrease in sGaw at 6 h (− 17.6 ± 4.6% compared to − 3.8 ± 4.2%). Increasing the time between Ova sensitisation and challenge, while returning to protocol 4 conditions (protocol 6, Fig.