Correlation coefficients with the multi-item variable length of the jump were considerably reduced. A statistically significant value of the correlation coefficient (r=0.39; p=0.05) was found only in the sixth jump. The value of the total variance (TV=50.13%) in the first common factor was calculated and it slightly exceeded the value of 50%, thus Z-VAD-FMK molecular weight providing the minimum criteria for a satisfactory relationship with the multi-item variable length of the jump. A significant reduction in the value of the correlation coefficients indicates a complex relationship of the performance of ski jumpers. During flight, a jumper must optimise the angle between the leg and ski, where it is important to conduct a sufficiently integrated complex system of rotation of the body and skis, which will truly take advantage of favourable aerodynamic forces during the take-off and establish the optimum position for the flight phase.
The aerodynamic aspect of take-off strongly determines the position of the skis. The research results show entirely low and statistically insignificant correlations between the multi-item variables, the angle between left and right ski, the horizontal axis, and the length of the jumps. The values of total variance in the first common factor do not reach 50%. The factor weights on the first factor are fairly homogeneous but negative. The most favourable aerodynamic position is where the skis are in a horizontal position during the early flight phase. The study of Virmavirta et al.
(2005) showed that Simon Amman (Olympic champion 2002) had skis perfectly horizontally positioned during the early flight in his victories, and that this enabled him to maintain the highest possible horizontal flight speed. Displacement of the skis from that position increases the aerodynamic drag of the skis and reduces the speed of the jumper during the early flight phase. Generally, the position of the skis during the early flight phase was similar. The average value between the seven rounds of the jumps was varied by about two angular degrees. Slightly higher mean values were generally found at the position of the right ski. No determination of significant correlation coefficients of the multi-item variable angle of hip extension and the criteria multi-item variable length of the jump was found. Based on the structure of factor weights in the first common factor, a slight positive correlation was shown.
Generally, the jumpers who had longer jumps had a slightly more stretched body position at the early flight phase. A more or less stretched body position can have a negative impact on the aerodynamic aspect in the middle part of the flight. In both cases, the positive influence of aerodynamic Cilengitide forces and their moments can be lowered. This again underlines the aerodynamic aspect of the flight phase. For some time, the so-called flat style of flying (Flat Style) was in use.